Archive for the “นวัตกรรมเครื่องจักรและผลิตภัณฑ์ วว.” Category


ผลิตภัณฑ์อาหารพร้อมบริโภคสำหรับผู้สูงอายุ Elderly Food

Tags: , , , , , , , , ,

Comments No Comments »


ก๊าซชีวภาพในระดับชุมชนและครัวเรือน Biogas Production

Tags: , , , , , , , , , ,

Comments No Comments »

การประเมินผลพฤติกรรมการกัดกร่อนของโลหะจากเส้นโค้งโพลาไรเซชัน (polarization curve)

>>โดย รุจีภรณ์ นาคขุนทด <<<

ศูนย์พัฒนาและวิเคราะห์สมบัติของวัสดุ

 

          การกัดกร่อน (corrosion) ของโลหะสามารถเกิดขึ้นได้ตลอดเพราะเป็นพฤติกรรมธรรมชาติของโลหะ เมื่อเกิดขึ้นแล้วย่อมทำให้เกิดความเสียหายได้ทั้งในด้านทรัพย์สิน เศรษฐกิจ ถ้าเราสามารถประเมินความเสียหายจากการกัดกร่อนของโลหะได้ก่อนก็จะช่วยยับยั้งความเสียหายที่จะเกิดขึ้นในอนาคต การประเมินอัตราการกัดกร่อนของโลหะ สามารถทำได้หลายวิธี เช่น การทดสอบการกัดกร่อนโดยการผึ่งในบรรยากาศ การทดสอบความทนละอองน้ำเกลือ การใช้คูปองการกัดกร่อน การทดสอบด้วยเทคนิคเคมีไฟฟ้าโดยประเมินผลการกัดกร่อนจากเส้นโค้งโพลาไรเซชัน (polarization curve) ที่ช่วยลดปัญหาที่จะเกิดขึ้นได้

       การทดสอบการกัดกร่อนของโลหะโดยเทคนิคเคมีไฟฟ้า (electrochemical technique) เป็นวิธีหนึ่งที่ช่วยประเมินอัตราการกัดกร่อนได้ดีและเร็ว และเป็นการจำลองการเกิดกระบวนการการกัดกร่อนของโลหะ โดยปกติแล้วการเกิดการกัดกร่อนเป็นปฏิกิริยาทางกายภาพของโลหะกับสภาพแวดล้อมรอบๆ โลหะ ซึ่งเกิดจากการถ่ายเทประจุไฟฟ้าหรือแลกเปลี่ยนอิเล็กตรอนในสารละลายของน้ำ เรียกว่า ปฏิกิริยาเคมีไฟฟ้า (electrochemical reaction) การเกิดปฏิกิริยาเคมีไฟฟ้าของการกัดกร่อนเป็นปฏิกิริยาออกซิเดชันและรีดักชัน เมื่อน้ำหรือสารละลายที่สัมผัสกับโลหะ หลักการของการทดสอบการกัดกร่อนโลหะโดยใช้เทคนิคทางเคมีไฟฟ้า คือการป้อนศักย์ไฟฟ้าเร่งการกัดกร่อน โดยใช้เครื่อง potentiostat/galvanostat ในสภาวะที่มีสารละลายอิเล็กโทรไลต์ ทำหน้าที่เป็นทางเดินของอิออน และเป็นการเชื่อมต่อเซลล์เคมีไฟฟ้า (electrochemical cell) ดังรูปที่ 1 ทำให้เราสามารถคำนวณหาอัตราการกัดกร่อนได้

          เซลล์เคมีไฟฟ้าที่ใช้ในการทดสอบการกัดกร่อนของโลหะประกอบไปด้วย

  • ขั้วทำงาน (working electrode หรือ specimen electrode) เป็นขั้วอาโนด ก็คือชิ้นตัวอย่างทดสอบ เป็นขั้วที่เกิดปฏิกิริยาออกซิเดชันและให้อิเล็กตรอน
  • ขั้วมาตรฐานอ้างอิง (standard reference electrode) เป็นขั้วแคโทด (cathode) ที่เกิดปฏิกิริยารีดักชันและรับอิเล็กตรอน เช่น SCE (saturated calomel electrode) หรือ Ag/AgCl ที่มีค่าศักย์ไฟฟ้าคงที่
  • ขั้วอิเล็กโทรดกระแส (counter electrode) มักจะใช้โลหะที่เสถียร เช่น แพลตินัม หรือ กราไฟต์ หรือ เหล็กกล้าไร้สนิม
  • สารละลายอิเล็กโทรไลต์ (electrolyte) ซึ่งเป็นทางเดินของอิออน

Microsoft Word - paper-58

รูปที่ 1  เซลล์เคมีไฟฟ้าที่ใช้ในการทดสอบการกัดกร่อน

 

          ค่าที่วัดได้จากการทดสอบ ได้เป็นเส้นโค้งโพลาไรเซชัน (polarization curve) ซึ่งแสดงความสัมพันธ์ระหว่างค่าศักย์ไฟฟ้าและค่ากระแสไฟฟ้า เมื่อป้อนศักย์ไฟฟ้าจนกระทั่งโลหะเริ่มเกิดการกัดกร่อนเราเรียกว่าค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) ที่จุดนี้ก็จะได้ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) ด้วย ซึ่งนำไปคำนวณหาอัตราการกัดกร่อน แสดงดังรูปที่ 2 ในขณะเดียวกันถ้าโลหะที่มีฟิล์มพาสซีพ (passive film) ที่ทนต่อการกัดกร่อน เช่น เหล็กกล้าไร้สนิม ถ้าป้อนศักย์ไฟฟ้าต่อไปอีกโลหะนั้นสร้างฟิล์มพาสซีพ (passive film) เพื่อป้องการการกัดกร่อนทำให้ค่ากระแสไฟฟ้าคงที่หรือลดลง ในขณะเมื่อที่ป้อนศักย์ไฟฟ้าเพิ่มขึ้นจนถึงระดับหนึ่งที่ทำให้ค่ากระแสไฟฟ้าเริ่มเพิ่มขึ้นอีกครั้ง  แสดงว่าเกิดการแตกของฟิล์มพาสซีพ (passive film) เป็นรูเข็ม (pitting) นั่นคือค่าศักย์ไฟฟ้าที่เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) และค่ากระแสไฟฟ้าพาสซีพ (passive current density, Ip) แสดงดังรูปที่ 3

Polarization curve_02

รูปที่ 2 เส้นโค้งโพลาไรเซชันสำหรับการกัดกร่อน แบบทั่วผิวหน้าของโลหะ (ASTM G 3)

 

Polarization curve_03

 

รูปที่ 3 เส้นโค้งโพลาไรเซชันสำหรับการกัดกร่อนที่เกิดฟิล์มพาสซีพ (passive film) คลุมทั่วผิวหน้าโลหะ (ASTM G 3)

 

          ลักษณะของเส้นโค้งโพลาไรเซชัน (polarization curve) แสดงพฤติกรรมการกัดกร่อนของโลหะมีรายละเอียดดังนี้

  • ค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) เป็นค่าศักย์ไฟฟ้าที่โลหะเริ่มเกิดการกัดกร่อน ซึ่งถ้าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อนต่ำจะไวต่อการกัดกร่อนมากกว่าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อนสูง
  • ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) เป็นค่าความหนาแน่นกระแสไฟฟ้าที่เกิดขึ้นที่จุดเกิด Ecorr โดยค่า Icorr แสดงถึงการกัดกร่อนแบบทั่วผิวหน้า (uniform corrosion) และสามารถนำมาคำนวณหาค่าอัตราการกัดกร่อนแบบทั่วผิวหน้าต่อปีของตัวอย่างทดสอบได้ จากสูตรดังนี้

                    อัตราการกัดกร่อน (corrosion rate) =(k x Icorr x EW)/(A x D)

                       –  k คือ ค่าคงที่ของการคำนวณเปลี่ยนหน่วยต่างๆ เช่น มีค่า 13 ถ้าอัตราการกัดกร่อนมีหน่วย มิลต่อปี (mil per year, mpy) หรือมีค่า 0.00327 ถ้าหน่วย มิลลิเมตรต่อปี (millimeter per year, mm/y)

                      –  Icorr คือ ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density) หน่วยเป็นไมโครแอมป์ต่อตารางเซนติเมตร (µA/cm2)

                       –  EW คือ ค่ามวลสมมูล (equivalent Weight) ของโลหะตัวอย่างที่ผ่านการทดสอบ ถ้าโลหะผสมต้องคำนวณตามสัดส่วน

                       –  A คือ พื้นที่ผิวของโลหะตัวอย่าง หน่วยเป็นตารางเซนติเมตร (cm2)

                       –  D คือ ความหนาแน่นของโลหะตัวอย่าง หน่วยเป็น กรัมต่อลูกบาศก์เซนติเมตร (g/cm3)

  • ค่าศักย์ไฟฟ้าขณะที่เกิดฟิล์มที่ผิว (primary passivation potential, Epp) เป็นค่าศักย์ไฟฟ้าที่โลหะเกิดฟิล์มพาสซีพ (passive film) คลุมทั่วผิวหน้าโลหะ ซึ่งมีผลให้เกิดการกัดกร่อนน้อยลง
  • ค่าศักย์ไฟฟ้าที่เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) เป็นค่าศักย์ไฟฟ้าที่โลหะเกิดการกัดกร่อนแบบรูเข็ม (pitting) ซึ่งพบในโลหะที่สามารถสร้างฟิล์มพาสซีพ (passive film) ที่ทนต่อการกัดกร่อน เช่น เหล็กกล้าไร้สนิม

 

          ตัวอย่าง เส้นโค้งโพลาไรเซชัน (polarization curve) และประเมินผลของการทดสอบแผ่นอะลูมิเนียมในสารละลายกรดซัลฟิวริก (Sulfuric acid, 1N H2SO4) รายละเอียดแสดงดังรูปที่ 4

 

Microsoft Word - paper-58

จากเส้นโค้งโพลาไรเซซัน (polarization curve) ประเมินผลได้ดังนี้

–  ค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) = – 0.142 V

–  ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) =  81 µA/ cm2

ข้อมูลของโลหะตัวอย่าง

–  ค่ามวลสมมูล (equivalent weight) ของอะลูมิเนียม =  99 g.

–  พื้นที่ผิวของโลหะตัวอย่าง =  1 cm2

–  ความหนาแน่นของอะลูมิเนียม =  7 g/cm3

คำนวณหาอัตราการกัดกร่อน (corrosion rate) =(k x Icorr x EW)/(A x D)

–  อัตราการกัดกร่อนของอะลูมิเนียม  =  0.15 mm/y

 

 

รูปที่ 4  เส้นโค้งโพลาไรเซชัน (polarization curve) ของการกัดกร่อนของแผ่นอะลูมิเนียมในสารละลายกรดซัลฟิวริก (Sulfuric acid,  1N H2SO4) และอัตราการกัดกร่อนของอะลูมิเนียม

 

          ตัวอย่างเส้นโค้งโพลาไรเซชัน (polarization curve) ที่เกิดฟิล์มพาสซีพ (passive film)  และประเมินผลค่าศักย์ไฟฟ้าที่ทำให้เกิดการกัดแบบรูเข็ม จากการทดสอบแผ่นสแตนเลส ทดสอบในสารละลายโซเดียมคลอไรด์ (5%NaCl) แสดงดังรูปที่ 5

Microsoft Word - paper-58

 

 

 

 

จากเส้นโค้งโพลาไรเซซัน (polarization curve) ที่เกิดฟิล์มพาสซีพ (passive film) ประเมินผลได้ดังนี้

ค่าศักย์ไฟฟ้าที่ทำให้เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) =  0.12 V

 

 

 

 

 

รูปที่ 5  เส้นโค้งโพลาไรเซชัน (polarization curve) ของการกัดกร่อนของแผ่นสแตนเลส ในสารละลายโซเดียมคลอไรด์ (5% NaCl) ที่เกิดฟิล์มพาสซีพ (passive film)

 

          ผลการประเมินการกัดกร่อนของโลหะจากเส้นโค้งโพลาไรเซชัน (polarization curve) ถ้าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อน (Ecorr ) ต่ำ จะไวต่อการกัดกร่อนมากกว่าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อน (Ecorr ) สูง และคำนวณหาอัตราการกัดกร่อนของโลหะต่อปีได้จากค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (Icorr) ดังนั้นการทดสอบการกัดกร่อนโลหะโดยเทคนิคเคมีไฟฟ้า (electrochemical test) เป็นวิธีหนึ่งที่สามารถศึกษาพฤติกรรมการกัดกร่อนของโลหะได้ ใช้เวลาน้อย เพื่อช่วยให้การเลือกวัสดุให้เหมาะสมกับงานหรือสามารถหาวิธีป้องกันการกัดกร่อนได้ดี

 

เอกสารอ้างอิง

การกัดกร่อนและการเลือกใช้วัสดุ โดย รศ. ศิริลักษณ์ นิวิฐจรรยงค์ ภาควิชาเคมีอุตสาหการ คณะวิทยาศาสตร์ประยุกต์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือพิมพ์ครั้งที่ 1 พ.ศ. 2545

Standard Practice for Convention Applicable to Electrochemical Measurements in Corrosion Testing1, ASTM G 3 – 89 (reapproved 2004)

Standard Practice for Calculation of Corrosion Rate and Related information from Electrochemical Measurements1, ASTM G 102 – 89 (reapproved 2004)E1

คู่มือการใช้เครื่อง Potentiostat/Galvanostat

Tags: , ,

Comments No Comments »

 วว. กับการสนองงานโครงการอันเนื่องมาจากพระราชดำริด้านพลังงานทดแทน

>>>>> โดย  วัชรีวรรณ ทรัพย์รุ่งเรือง <<<<<

15676352_10154973150273938_3643245635217486564_o (1)

 

          ในการเสวนา “วว….สืบสานงานพ่อ” ณ วว.เทคโนธานี คลองห้า เมื่อปลายเดือนธันวาคม ที่ผ่านมาดร.ธีรภัทร ศรีนรคุตร ผู้เชี่ยวชาญพิเศษ ได้เล่าให้ชาว วว. ฟังว่า วว. ได้เริ่มดำเนินการโครงการเอทานอล ซึ่งเป็นโครงการอันเนื่องมาจากพระราชดำริด้านพลังงานทดแทน มาตั้งแต่ปี พ.ศ. 2522 ซึ่งเป็นปีที่ท่านผู้เชี่ยวชาญพิเศษ ได้เริ่มเข้ามาทำงาน ในตำแหน่งวิศวกร ท่านได้เล่าว่า พระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ได้ทรงมีพระราชดำริว่าวิกฤตด้านพลังงานกระทบกับชีวิตของมนุษย์บนโลกใบนี้อย่างต่อเนื่อง จะเห็นจากการเกิดวิกฤตพลังงานนับตั้งแต่ปี 2516 ราคาน้ำมันปรับตัวสูงขึ้นแบบก้าวกระโดด เนื่องจากสงคราม และต่อมาในปี 2523 ก็เกิดวิกฤตพลังงานขึ้น โดยประเทศไทยซึ่งเป็นประเทศเล็กๆ มีเนื้อเพียงแค่ที่ราวๆ 1 % ของโลกใบนี้ กลับต้องนำเข้าน้ำมันเป็นมูลค่านับล้านล้านบาท แต่ด้วยสายพระเนตรอันกว้างไกลของพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ทรงเห็นว่าประเทศไทยเราตั้งอยู่บนแผ่นดินสุวรรณภูมิซึ่งมีความอุดมสมบูรณ์ ด้วยพืชพันธุ์ธัญญาหารมากมาย พระองค์จึงทรงมีพระราชดำริให้นำเอาพืชผลทางเกษตรที่มีอยู่มาผลิตเป็นพลังงานทดแทนการนำเข้าน้ำมัน ซึ่งเป็นพลังงานฟอสซิลเกิดจากการทับถมของซากพืช ซากสัตว์ใช้เวลาเป็นล้านๆ ปี มาทำทดแทนน้ำมัน โดยไม่ต้องใช้เวลาเป็นล้านล้านปีเพื่อที่จะรอน้ำมัน

          วว. จึงได้คิดโครงการสนองแนวพระราชดำริดังกล่าว ด้วยการนำเอาพืชผลทางการเกษตร ได้แก่ มันสำปะหลัง  และอ้อย มาผลิตเป็นเอทานอลใช้ทดแทนน้ำมัน โดยเริ่มทำโครงการวิจัยและพัฒนานี้ ตั้งแต่ปี 2522  ต่อมาในปี 2524 จึงเริ่มสร้างโรงงานต้นแบบ และเริ่มทดลองผลิตในปี 2526 จากนั้นจึงเริ่มทดลองตลาดครั้งแรกในปี 2528 ด้วยการเอาเอทานอลผสมน้ำมันเบนซินได้เป็นแก๊สโซฮอล์ (สมัยนั้นเรียก เบนโซฮอล์ หรือน้ำมันเบนซินพิเศษ) สุดท้ายเมื่อประสบความสำเร็จเราก็เสนอเรื่องเข้าคณะรัฐมนตรี (ครม.) ไป 4 ครั้ง แต่เนื่องจากสมัยก่อนราคาน้ำมันอาจจะไม่แพงมาก ทำเป็นเชิงพาณิชย์อาจจะไม่คุ้ม ทำให้โครงการหยุดชะงัก

          จนกระทั่งในปี 2540 หลังจาก ดร.ธีรภัทร สำเร็จการศึกษาปริญญาเอกกลับจากต่างประเทศ จึงเริ่มเสนอโครงการฯ ในระดับนโยบายให้กระทรวงวิทยาศาสตร์และเทคโนโลยี ซึ่งทางกระทรวงฯ ได้พิจารณาเห็นว่าเป็นโครงการที่ดี จึงได้ตั้งเป็นคณะกรรมการขึ้นมาศึกษา โดย วว. สนับสนุนข้อมูลด้านเทคนิค และให้มีการไปศึกษาดูงานที่ประเทศบราซิล เนื่องจากเป็นประเทศแรกที่มีการใช้เอทานอลเป็นเชิงพาณิชย์ โดยยึดหลักการที่ว่า เมื่อเขาทำได้ เราก็ต้องทำได้ จากนั้นก็เริ่มทำการประชาสัมพันธ์โครงการฯ ผ่านสื่อโทรทัศน์ครั้งแรกในรายการท้าพิสูจน์ หัวข้อ “มันสำปะหลังนำมาทำน้ำมันได้จริงหรือ” ซึ่ง ดร.ธีรภัทร ได้ร่วมรายการเพื่อให้ความรู้เกี่ยวกับเอทนอล

          ต่อมาในวันที่ 19 กันยายน 2543 กระทรวงวิทยาศาสตร์ฯ ได้นำเรื่องเอทานอลเข้าที่ประชุม ครม. ซึ่งครม. มีมติให้สนับสนุนและส่งเสริมการใช้เอทานอลในเชิงพาณิชย์ จากนั้นรัฐมนตรีกระทรวงอุตสาหกรรมขณะนั้นได้ขอให้ย้ายโครงการฯ นี้ ไปอยู่ภายใต้กระทรวงอุตสาหกรรม ตั้งเป็น “คณะกรรมการเอทานอลแห่งชาติ” โดย ดร.ธีรภัทร ได้รับเกียรติให้เป็นกรรมการผู้ทรงคุณวุฒิ ดำเนินการเรื่องนโยบาย ระเบียบ กฎเกณฑ์ต่างๆ ซึ่งเป็นที่มาของการผลิตเอทานอลเชิงพาณิชย์ และในปัจจุบันมีโรงงานผลิตเอทานอล 22 โรงงาน ผลิตเอทานอลได้วันละประมาณ 4 ล้านลิตร

15540914_10154973150638938_5038547393470841823_o (1)          อย่างไรก็ตาม ภายหลังจากที่รัฐบาลเปิดให้เอกชนเข้ามาลงทุนแล้ว ยังมีประชาชนส่วนหนึ่งยังไม่เชื่อว่าเอทานอลสามารถนำมาทดแทนน้ำมันได้จริง ดร.ธีรภัทร ได้ประสานความร่วมมือกับ ดร.อนุสรณ์ แสงนิ่มนวล ผู้อำนวยการอาวุโสของบริษัท บางจากปิโตรเลียม จำกัด (มหาชน) ในขณะนั้น ได้อนุมัติงบประมาณให้ วว. มา 7 แสนบาท สำหรับซ่อมแซมโรงงานต้นแบบผลิตเอทานอลของ วว. ที่บางเขน เพื่อให้ผลิตเอทานอลส่งให้บางจากนำไปทดลองตลาดระหว่างปีพ.ศ. 2544 – 2546 และเพื่อเป็นการสร้างความมั่นใจ จึงได้ขอความร่วมมือทดลองใช้แก๊สโซฮอล์กับรถยนต์ของทางราชการก่อน

              ดร.ธีรภัทร กล่าวว่า “การใช้เอทานอล หรือแก๊สโซฮอล์ในประเทศไทยจะเกิดขึ้นไม่ได้เลยถ้าไม่มี วว. ที่เป็นหน่วยงานหลักของประเทศในการดำเนินโครงการเอทานอลสนองแนวพระราชดำริของพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ตลอดชีวิตการทำงานได้ทำงานในโครงการเอทานอลประมาณเกือบ 50 โครงการ และมีโอกาสได้เข้าเฝ้าพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดชถึง 4 ครั้ง แต่ครั้งที่ภาคภูมิใจมากที่สุดในชีวิตคือ ครั้งที่ได้ทูลเกล้าถวายหนังสือเฉลิมพระเกียรติ พลังงานทดแทนเอทานอลไบโอดีเซล เล่มนี้ถือเป็นคัมภีร์เล่มแรกสำหรับเอทานอลในเมืองไทย”

          โครงการเอทานอลของ วว. ถือเป็นความภาคภูมิใจของ วว. เป็นอย่างมาก ที่ได้สนองพระราชดำริพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ในเรื่อง การลดการนำเข้าพลังงาน และช่วยเหลือเกษตรกรหลาย 10 ล้านครัวเรือน และช่วยประเทศไทยมีพลังงานสะอาดใช้ อย่างยั่งยืน

—————————————————————————-

Tags: , ,

Comments No Comments »

เตาพลังงานแสงอาทิตย์ พลังงานฟรี จากค่ายเยาวชนสะแกราช

>>>>> โดย วัชรีวรรณ ทรัพย์รุ่งเรือง <<<<<

          “ไข่ต้มพลังงานแสงอาทิตย์ของเด็กๆ พร้อมทานแล้วค่ะ”

           ไม่น่าเชื่อว่า เพียงระยะเวลาแค่ 3 – 4 ชั่วโมง กับแสงแดดจ้าในฤดูร้อนกลางป่าดิบแล้งสะแกราช จะทำให้เยาวชนสมาชิกค่ายเยาวชนวิทยาศาสตร์ ของ วว. ได้รับประทานไข่ไก่ที่สุกทั่วถึงกัน

          เราได้ให้น้องๆ เยาวชนทำการทดลอง ประดิษฐ์เตาพลังงานแสงอาทิตย์ เลียบแบบตามหลักการทำเตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ของมูลนิธิศูนย์สื่อเพื่อการพัฒนา ด้วยหลักการง่ายๆ อันได้แก่ การใช้พื้นผิวโลหะที่รองรับและสะสมพลังงานแสงอาทิตย์ และเปลี่ยนไปเป็นพลังงานความร้อน ก่อนที่จะถ่ายเทไปสู่พื้นผิวภาชนะที่รองรับอาหารที่ต้องการปรุงให้สุก

image001image003

 

          ด้วยหลักการดังนี้ จะได้ เตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ที่มีลักษณะเป็นกล่องสี่เหลี่ยม ภายในกล่องสี่เหลี่ยมมีผนัง 4 ด้าน และพื้น 1 ด้านที่เป็นฉนวนกันความร้อนที่สามารถกักเก็บความร้อน ส่วนด้านบนของกล่องปิดด้วยกระจกใส เมื่อแสงแดดส่องผ่านกระจกเข้าไปในกล่อง จะถูกดูดซับไว้ด้วย แผ่นรองรับแสงสีดำและภาชนะใส่อาหารสีดำ พลังงานแสงที่ถูกดูดซับเอาไว้จะเปลี่ยนไปเป็นพลังงานความร้อนสะสมอยู่ภายในกล่อง

       น้องๆ เยาวชน แบ่งกลุ่มกันออกไปเป็น 5 กลุ่ม แต่ละกลุ่มช่วยกันสร้างเตาเลียนแบบเตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ด้วยหลักการเดียวกัน จากวัสดุ อุปกรณ์ที่พอหาได้ ได้แก่ ลังกระดาษ A4 กระดาษอะลูมิเนียมฟอยล์ ปกเอกสารแผ่นใส กระดาษโปสเตอร์สีดำ กรรไกร คัตเตอร์ แลกซิน ฯลฯ

         จากการสังเกตการณ์ของทีมงาน และพี่เลี้ยง พบว่าเยาวชนทุกคนตื่นเต้นมาก และร่วมมือร่วมใจช่วยกันประดิษฐ์เตาพลังงานแสงอาทิตย์ เป็นอย่างดี หลายกลุ่มทำได้เหนือความคาดหมายว่าเยาวชนชั้นประถมศึกษาตอนปลายจะสามารถทำได้ น้องๆ ใช้หลักการสังเกต พยายามประดิษฐ์เลียนแบบเตาต้นแบบให้ใกล้เคียงได้มากที่สุด มีการใช้หลักการดูดซับแสง-โดยใช้กระดาษสีดำ หลักการสะท้อนของแสง-ใช้อะลูมิ
เนียมฟอยล์ หลักการกักเก็บความร้อน-ใช้แผ่นใสปิดหน้ากล่อง จนทำให้หลายกลุ่มประสบความสำเร็จในการทำไข่ให้สุก

 

image008image004image006

 

          กิจกรรมนี้ ถือว่าประสบผลสำเร็จเป็นอย่างดี เยาวชนชื่นชอบเป็นอย่างมาก เพราะเป็นกิจกรรมที่น้องๆ ได้ลงมือทำเอง ประดิษฐ์สิ่งของ และทำการทดลองเรื่องพลังงานแสงอาทิตย์ (solar energy) ด้วยตัวเอง สร้างความรู้ (knowledge) ความภาคภูมิใจ (proudly) ให้กับเยาวชน และยังก่อให้เกิดความตระหนัก (awareness) ด้านการอนุรักษ์พลังงาน ส่งผลให้เยาวชนมีทัศนคติ (attitude) ที่ดีต่อการรักษาทรัพยากรธรรมชาติ เพื่อโลกที่น่าอยู่มากยิ่งขึ้น

Tags: ,

Comments No Comments »

 

โดย ดร. นิกร  แก้วแพรก

         ปัจจุบันการนำพลังงานทางเลือกมาใช้ อาทิ พลังงานความร้อน (thermal energy) พลังงานลม (wind energy) และพลังงานแสงอาทิตย์ (solar energy) ได้รับความนิยมอย่างแพร่หลายในหลายประเทศทั่วโลก เนื่องจากเป็นพลังงานสะอาด มีผลกระทบต่อสิ่งแวดล้อมน้อย และไม่มีต้นทุนด้านพลังงาน และจากภาวะขาดแคลนพลังงานที่จะเกิดขึ้นในอนาคตหลายประเทศได้ให้ความสนใจในการลงทุนด้านพลังงานทางเลือกเพื่อลดต้นทุนการใช้พลังงานหลักจากน้ำมันและก๊าซธรรมชาติ อย่างประเทศไทยได้เริ่มมีการใช้พลังงานทดแทนอย่างเช่น แก๊สโซฮอล์ และ  ไบโอดีเชล ที่เห็นเป็นรูปประจักษ์ เมื่อไม่นานมานี้พลังงานลมและพลังงานแสงอาทิตย์ได้เป็นที่รู้จักกันมากขึ้นจากโครงการชั่งหัวมันตามพระราชดำริ อำเภอท่ายาง จังหวัดเพชรบุรี โดยการติดตั้งระบบผลิตไฟฟ้าพลังงานลมเพื่อใช้ประโยชน์ภายในโครงการและติดตั้งระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์เพื่อสูบน้ำขึ้นไปเก็บไว้ยังอ่างเก็บน้ำหนองเสือแล้วปล่อยน้ำลงมาเพื่อใช้ในด้านเกษตรกรรมของโครงการชั่งหัวมัน และยังมีงานที่เกี่ยวข้องกับระบบสูบน้ำบาดาลด้วยโซลาเซลล์อีกมากมาย อาทิ โครงการส่งเสริมและสนับสนุนเทคโนโลยีการผลิตพลังงานทดแทนเพื่อลดต้นทุนการผลิตระบบสูบน้ำพลังงานแสงอาทิตย์ขนาด 3 กิโลวัตต์ ของกลุ่มเกษตรบ้านหางแขยง ตำบลหางน้ำสาคร อำเภอมโนรมย์ จังหวัดชัยนาท เป็นต้น

ในรอบปีที่ผ่านมา ประเทศไทยได้ประสบปัญหาภัยแล้งจากภาวะการขาดแคลนน้ำใช้ในภาคเกษตรกรรมอย่างมาก ระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ได้มีส่วนช่วยเหลืออย่างมากมายในการเป็นแหล่งพลังงานทดแทนด้านกำลังไฟฟ้าที่ใช้ในการสูบน้ำบาดาลขึ้นมาเพื่อช่วยเหลือพี่น้องเกษตรกรในพื้นที่ห่างไกลและประสบปัญหาภัยแล้ง แต่อาจยังไม่คลอบคลุมในหลายๆจังหวัดของประเทศไทย มีการคาดการณ์อีกว่าในปี 2560 อาจจะเกิดภัยแล้งขึ้นอีกครั้ง ระบบสูบน้ำบาดาลด้วยพลังงานแสงอาทิตย์จึงอาจจะเป็นทางเลือกที่ดีของกลุ่มเกษตรกร เนื่องจากปัจจัยด้านราคาของวัสดุและอุปกรณ์มีราคาถูกลงอย่างมากเมื่อเทียบกับอดีตที่ผ่านมา และจากการนำระบบผลิตไฟฟ้ามาใช้กับการสูบน้ำบาดาล บทความนี้จะกล่าวถึงการประยุกต์เทคโนโลยีการผลิตพลังงานทดแทนสำหรับระบบประปาบาดาลเพื่อใช้อุปโภคและบริโภคสำหรับหมู่บ้านและลดต้นทุนด้านกำลังไฟฟ้าด้วยระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ (solar cell) พร้อมระบบสำรองพลังงาน (battery backup)

 

pic1

รูปที่ 1 ระบบประปาบาดาลด้วยระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์

หลักการทำงานของระบบ

เทคโนโลยีระบบสูบน้ำประปาบาดาลด้วยระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ (The Photovoltaic Systems) พร้อมระบบสำรองพลังงาน มีหลักการทำงานดังต่อไปนี้

  • ขณะสูบน้ำขึ้นหอถัง
    • ในกรณีพลังงานแสงอาทิตย์มีเพียงพอ พลังงานไฟฟ้าจะถูกจ่ายไปยังเครื่องสูบน้ำผ่านเครื่องควบคุมหรืออินเวอร์เตอร์ และประจุสะสมเข้าแบตเตอรีสำรองไฟฟ้า
    • ในกรณีพลังงานแสงอาทิตย์มีไม่พอสำหรับเครื่องสูบน้ำ พลังงานไฟฟ้าที่ถูกสะสมไว้ในแบตเตอรีจะถูกนำมาเสริมกับพลังงานไฟฟ้าที่ผลิตได้จากแสงอาทิตย์เพื่อให้ระบบเกิดการทำงานสมดุลแบบอัตโนมัติ
    • และในกรณีฉุกเฉิน เช่นพลังงานไฟฟ้าทั้งจากแสงอาทิตย์และไฟฟ้าจากแบตเตอรีสำรองมีไม่เพียงพอ หากมีไฟฟ้าจากการไฟฟ้าหรือเครื่องกำเนิดไฟฟ้าเชื่อมเข้ากับเครื่องควบคุม ไฟฟ้าจากการไฟฟ้าหรือเครื่องกำเนิดไฟฟ้าจะจ่ายพลังงานให้กับเครื่องสูบน้ำและสามารถประจุแบตเตอรีในเวลาเดียวกัน (เช่น ในช่วงเวลาที่มีฝนตกต่อเนื่อง)
    • พลังงานที่ถูกสะสมในแบตเตอรี ยังสามารถนำไปใช้กับเครื่องใช้ไฟฟ้าอื่นๆ ได้ ในขณะเครื่องสูบน้ำทำงาน เช่น ระบบแสงสว่าง กล้องวงจรปิด หรืออื่นๆ ขึ้นอยู่กับการออกแบบเพิ่มเติมตามความต้องการ

การประยุกต์ใช้เทคโนโลยีพลังงานทดแทนด้วยระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ข้างต้นให้เข้ากับระบบสูบน้ำประปาบาดาลในปัจจุบัน

ระบบสูบน้ำบาดาลสามารถพิจารณาได้จากเครื่องสูบน้ำในแต่ละรุ่นประกอบไปด้วยประสิทธิภาพโดยเฉลี่ยของมอเตอร์อยู่ที่ประมาณ 55% ของประสิทธิภาพโดยรวมและเมื่อชดเชยกับค่าการสูญเสียทางไฟฟ้า 5% ดังนั้นกำลังไฟฟ้าที่ต้องใช้ในการขับมอเตอร์แต่ละรุ่นจึงมีขนาดดังแสดงในตารางที่ 1

ตารางที่ 1 กำลังไฟฟ้าที่ต้องใช้ในการขับมอเตอร์

Aviary Photo_131271988005523642

การนำพลังงานไฟฟ้าแสงอาทิตย์มาใช้ในระบบสูบน้ำประปาบาดาลจะต้องมีความสัมพันธ์กับอัตราการสูบที่กำหนดไว้นั้น เพื่อให้ระบบทำงานได้อย่างต่อเนื่อง หากคำนวณเฉพาะแหล่งพลังงานแสงอาทิตย์ที่จะนำมาประยุกต์ใช้ สามารถสรุปได้ดังแสดงในตารางที่ 2

 

 ตารางที่ 2 การเปรียบเทียบอัตราการสูบกับกำลังไฟฟ้าที่ต้องการ

Aviary Photo_131271988943119087

จากข้อมูลเชิงพฤติกรรมของกลุ่มผู้ใช้น้ำบาดาล ซึ่งส่วนใหญ่อยู่ในพื้นที่ชนบทพบว่า ระบบมีความต้องการใช้น้ำสูงสุด (peak demand) 2 ช่วงเวลา คือ ช่วงเช้า 06.00-08.00 น. และช่วงเย็น 16.00-18.00 น. ทั้งในกรณีประปาเพื่อการเกษตรและประปาหมู่บ้าน (ทั้งนี้เวลาอาจแตกต่างกันขึ้นกับปัจจัยที่แตกต่างกันในแต่ละภูมิภาค) ซึ่งเป็นช่วงเวลาที่แหล่งพลังงานแสงอาทิตย์เพียงอย่างเดียวไม่สามารถตอบสนองความต้องการ (peak demand) ได้

ตารางที่ 3 การเปรียบเทียบขนาดเครื่องสูบน้ำกับกำลังไฟฟ้าที่ต้องการจากแผงเซลล์แสงอาทิตย์

Aviary Photo_131271989241228020

อย่างไรก็ตาม ระยะเวลานอกเหนือจากที่กล่าวมาข้างต้น นั่นคือเวลา 08.00-16.00 น. จะเป็นระยะเวลาที่พลังงานแสงอาทิตย์ที่ความเข้มของแสงเหมาะสมที่จะนำมาใช้ประโยชน์ได้สูงสุด และยังเป็นช่วงเวลาที่ระบบประปาบาดาลสามารถสูบน้ำเข้าหอถังพักน้ำจนเต็ม จนกระทั่งระบบหยุดการทำงานโดยอัตโนมัติในท้ายที่สุด หากนำปัจจัยด้านเวลามาพิจารณาจะพบว่า ระบบสูบน้ำจำเป็นจะต้องมีพลังงานส่วนเกิน (06.00-08.00 น. และ 16.00-18.00 น. รวม 4 ชั่วโมง) ที่สามารถชดเชยและนำมาประจุสะสมเข้าแบตเตอรีเพื่อนำไปใช้กับเครื่องใช้ไฟฟ้าอื่นๆ ที่จำเป็น

การประยุกต์เทคโนโลยีด้านพลังงานทดแทนอย่างระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์ร่วมกับระบบประปาบาดาลทำให้เราสามารถลดต้นทุนด้านพลังงานไฟฟ้าลงไปได้อย่างมากมาย มีอายุการใช้งานไม่น้อยกว่า 10 ปี และเป็นประโยชน์สำหรับกลุ่มเกษตรกรที่ต้องการใช้ทรัพยากรน้ำยามขาดแคลนในช่วงหน้าแล้ง

Tags: , , ,

Comments 1 Comment »

โดย ดร. อัญชนา พัฒนสุพงษ์

test1
มลภาวะสิ่งแวดล้อมจากขยะพลาสติกที่มีปริมาณการใช้สูงมาก การผลักดันให้ใช้ผลิตภัณฑ์ชีวภาพเป็นแนวทางหนึ่งในการแก้ไขปัญหานี้ อย่างไรก็ตาม ระยะเวลาในการสลายตัวของผลิตภัณฑ์ชีวภาพนั้น นอกจากจะขึ้นกับวัตถุดิบในการผลิต ขนาดของผลิตภัณฑ์ ตลอดจนลักษณะการใช้งานแล้ว ที่สำคัญยังขึ้นกับสภาพแวดล้อมของพื้นที่ที่นำไปทิ้งหรือฝังกลบด้วย ดังนั้น การตรวจสอบการสลายตัวได้ทางชีวภาพในระดับภาคสนามหรือในห้องปฏิบัติการ เป็นทางหนึ่งที่สามารถประเมินสมบัติการสลายตัวของผลิตภัณฑ์ในสภาวะธรรมชาติได้

test2

     สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) โดยฝ่ายวิทยาศาสตร์ชีวภาพ ได้ริเริ่มศึกษาการสลายตัวทางชีวภาพของวัสดุ มาตั้งแต่ปี 2551 โดยได้ร่วมกับคณะเกษตรศาสตร์ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร และได้รับทุนสนับสนุนบางส่วนจากคณะกรรมการวิจัยแห่งชาติ (วช.) ซึ่งประสบความสำเร็จในการพัฒนาวิธีการตรวจสอบการสลายตัวของวัสดุทดสอบชนิดพลาสติกชีวภาพในเบื้องต้น (preliminary biodegradation test) โดยใช้หลักการตรวจวัดปริมาณก๊าซคาร์บอนไดออกไซด์สะสมที่เกิดจากกิจกรรมการสลายตัวของวัตถุทดสอบโดยจุลินทรีย์ในปุ๋ยหมัก ภายใต้สภาวะควบคุมในระดับห้องปฏิบัติการ เป็นวิธีการที่รวดเร็ว แม่นยำ และมีค่าใช้จ่ายที่น้อยกว่าการทดสอบตามมาตรฐานสากล ทั้งนี้ วว. ได้ยื่นจดสิทธิบัตรและให้บริการทดสอบดังกล่าวนี้แก่หน่วยงานภาครัฐและเอกชนมาตั้งแต่ปี 2553

     กล่าวได้ว่า วว. เป็นหน่วยงานหนึ่งที่มีความพร้อมด้านองค์ความรู้ บุคลากร รวมทั้งเครื่องมืออุปกรณ์ ในการจัดตั้งห้องปฏิบัติการทดสอบการสลายตัวทางชีวภาพ (Biodegradability Testing Laboratory) ที่มีศักยภาพในการให้บริการวิเคราะห์พลาสติกสลายตัวได้ทางชีวภาพตามมาตรฐานสากล ISO 17088 ซึ่งสอดคล้องกับมาตรฐานอุตสาหกรรม มอก. 17088-2555 และได้รับการยอมรับให้ขึ้นทะเบียนกับสถาบัน DIN CERTCO ประเทศเยอรมนีตั้งแต่ปี 2557 โดยขณะนี้อยู่ระหว่างการจัดตั้งศูนย์ทดสอบการสลายตัวทางชีวภาพที่มีระบบการบริหารงานที่ได้รับการรับรองตามมาตรฐานสากล ISO/ IEC 17025 จากหน่วยรับรองระบบงาน (Accreditation body) ที่เป็นที่ยอมรับ และสามารถให้บริการวิจัยด้านการบำบัดสารอันตรายตกค้างในสิ่งแวดล้อม รวมถึงบริการวิเคราะห์ทดสอบการสลายตัวได้ทางชีวภาพของวัตถุดิบหรือผลิตภัณฑ์ที่เป็นมิตรต่อสิ่งแวดล้อมเพื่อได้มาซึ่งข้อมูลที่ยืนยันถึงคุณภาพของผลิตภัณฑ์ด้วยวิธีการตามมาตรฐานสากล

     การวิเคราะห์ทดสอบการสลายตัวทางชีวภาพโดยห้องปฏิบัติการของ วว. นี้  นอกจากจะสอดคล้องกับการพัฒนาอุตสาหกรรมพลาสติกชีวภาพในประเทศไทย ซึ่งเป็นนโยบายสำคัญของรัฐบาลแล้ว ยังเป็นประโยชน์อย่างยิ่งต่อผู้ประกอบการอุตสาหกรรมด้านวัสดุย่อยสลายได้ทางชีวภาพของประเทศ เนื่องจากเป็นการสร้างความเชื่อมั่นในคุณภาพด้านความปลอดภัยของบรรจุภัณฑ์และผลิตภัณฑ์ที่ทำจากวัสดุชีวภาพของไทย ทำให้คู่ค้าทั้งในประเทศและต่างประเทศยอมรับ เพิ่มขีดความสามารถในการแข่งขันและการส่งออกสินค้า และที่สำคัญยังช่วยแก้ปัญหาการกีดกันทางการค้าด้านสิ่งแวดล้อมจากหลายประเทศทั่วโลกที่ให้ความสำคัญอย่างมากกับปัญหาขยะพลาสติก จึงนับได้ว่า เป็นความภาคภูมิใจของ วว. ที่มีส่วนช่วยให้อุตสาหกรรมไทยพัฒนาศักยภาพไปสู่ความเป็นมาตรฐานสากลที่เป็นมิตรต่อสิ่งแวดล้อม

test3

Tags: , ,

Comments No Comments »

 การตรวจสอบมวลของสารเคลือบสำหรับผลิตภัณฑ์เหล็กชุบเคลือบสังกะสีโดยวิธีการจุ่มร้อน

 


รุจีภรณ์ นาคขุนทด
ศูนย์พัฒนาและวิเคราะห์สมบัติของวัสดุ
สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย

 

          ปัจจุบันภาคอุตสาหกรรมก่อสร้าง ได้มีการใช้เหล็กชุบเคลือบสังกะสีโดยวิธีการจุ่มร้อน (Hot Dip Galvanizing) มากขึ้น เนื่องจากมีความต้านทานต่อการกัดกร่อนในสภาพบรรยากาศได้ดี คุณสมบัติของสังกะสีที่เคลือบช่วยปกป้องไม่ให้เหล็กผุกร่อนเนื่องจากการที่ตัวสังกะสีถูกกัดกร่อนก่อน เป็นทางเลือกที่ดีกับงานโครงสร้างที่ต้องอยู่ในสภาพบรรยากาศภายนอก ได้แก่ หลังคา รั้วบ้าน ราวเหล็กขอบทาง สะพาน เสาไฟฟ้า สถานีส่งไฟฟ้า ลวดเหล็ก ลวดตาข่าย ตะปู นอตสกรู รางน้ำ ถังน้ำ งานท่อ เช่น ท่อระบายอากาศ ท่อน้ำ เป็นต้น บริษัทในประเทศไทยส่วนใหญ่ที่เป็นผู้ผลิตและจำหน่ายผลิตภัณฑ์เหล็กชุบเคลือบสังกะสีจะขอการรับรองมาตรฐานผลิตภัณฑ์อุตสาหกรรม (มอก.) เพื่อให้เกิดความมั่นใจในคุณภาพของผลิตภัณฑ์ แต่บางครั้งบริษัทได้นำผลิตภัณฑ์จากต่างประเทศซึ่งมีราคาถูกกว่าในประเทศเข้ามาจำหน่าย ดังนั้น การตรวจสอบคุณภาพของผลิตภัณฑ์ตามมาตรฐานจึงมีความจำเป็นอย่างยิ่ง เพื่อให้เกิดความมั่นใจในการนำผลิตภัณฑ์ไปใช้งาน

 

Hot Dip Galvanizing_01

Hot Dip Galvanizing_02

 

          มาตรฐานการทดสอบผลิตภัณฑ์เหล็กชุบเคลือบสังกะสีโดยวิธีการจุ่มร้อน ได้มีการกำหนดคุณภาพและการตรวจคุณสมบัติต่าง ๆ ให้เป็นไปตามมาตรฐาน ซึ่งมีการระบุ รูปร่าง มิติ และเกณฑ์ความคลาดเคลื่อน องค์ประกอบทางเคมีของวัสดุ สมบัติทางกล ได้แก่ ความเค้นดึงสูงสุด, ความเค้นคราก และความยืด คุณสมบัติที่สำคัญอีกประการหนึ่งที่กำหนดคือความหนาหรือมวลของสังกะสีที่เคลือบ มาตรฐานต่างประเทศที่ใช้ในทดสอบคุณสมบัติของผลิตภัณฑ์เหล็กชุบเคลือบสังกะสี เช่น ISO 9364, ISO 1460 สำหรับประเทศไทย จะกำหนดมาตรฐานคุณภาพตามการนำผลิตภัณฑ์ไปใช้งานโดยมีมาตรฐานผลิตภัณฑ์อุตสาหกรรม (มอก.) เป็นมาตรฐานการรับรอง เช่น มอก. 50 เหล็กแผ่นรีดเย็นเคลือบสังกะสีโดยกรรมวิธีจุ่มร้อน แผ่นม้วน แผ่นตัด และแผ่นลูกฟูก, มอก. 71 ลวดเหล็กเคลือบสังกะสี,  มอก. 76 ลวดหนามเคลือบสังกะสี, มอก. 208 ลวดตาข่ายเคลือบสังกะสี, มอก. 238 ถังน้ำเหล็กอาบสังกะสี, มอก. 277 ท่อเหล็กกล้าอาบสังกะสี, มอก. 248 ราวเหล็กลูกฟูกกันรถสำหรับทางหลวง, มอก. 404 ลวดเหล็กกล้าเคลือบสังกะสีตีเกลียว, มอก. 449 เหล็กคร่าวเพดานแบบแขวน, มอก. 2131 แผ่นเหล็กเคลือบสังกะสีโดยกรรมวิธีจุ่มร้อนและเคลือบสี:แผ่นม้วนและแผ่นตัด, มอก. 2132 แผ่นเหล็กเคลือบสังกะสีโดยกรรมวิธีจุ่มร้อนและเคลือบสี:แผ่นลอน, มอก. 2228 เหล็กแผ่นเคลือบอะลูมิเนียม/สังกะสีโดยกรรมวิธีจุ่มร้อน สำหรับงานทั่วไป งานขึ้นรูป และงานโครงสร้างทั่วไป เป็นต้น

          บทความนี้จะกล่าวถึงการตรวจสอบมวลของสารเคลือบทั้งเคลือบสังกะสีหรือเคลือบอะลูมิเนียม/สังกะสีเพื่อการยอมรับผลิตภัณฑ์ สำหรับเหล็กแผ่นรีดเย็นเคลือบสังกะสีโดยกรรมวิธีจุ่มร้อน แผ่นม้วน แผ่นตัด และแผ่นลูกฟูก ตาม มอก. 50 และ เหล็กแผ่นเคลือบอะลูมิเนียม/สังกะสีโดยกรรมวิธีจุ่มร้อน สำหรับงานทั่วไป งานขึ้นรูป และงานโครงสร้างทั่วไป ตาม มอก. 2228 รวมถึง ราวเหล็กลูกฟูกกันรถสำหรับทางหลวง ตาม มอก. 248 ในแต่ละมาตรฐานได้กำหนดการสุ่มชิ้นงาน จำนวนชิ้นงาน  และขนาดของชิ้นงานเพื่อใช้ในการคำนวณพื้นที่ผิวที่เคลือบของชิ้นงาน การตรวจสอบเริ่มจากการทำความสะอาดชิ้นงาน ชั่งหาน้ำหนักก่อนล้างด้วยสารเคมี แล้วนำมาล้างด้วยสารเคมีเพื่อละลายเอาสารเคลือบออก ล้างด้วยน้ำ เช็ดให้แห้งแล้วนำมาชั่งน้ำหนักหลังล้างอีกครั้ง จากนั้นคำนวณหาน้ำหนักที่หายไปต่อพื้นที่เป็นค่ามวลของสังกะสีที่เคลือบกำหนดหน่วยเป็นกรัมต่อตารางเมตร ในกรณีผลิตภัณฑ์ตาม มอก. 50 ให้เทียบค่ามวลของสังกะสีที่เคลือบตามตารางที่ 1 เช่น ผลิตภัณฑ์ Z060 ต้องมีค่ามวลเฉลี่ยของสังกะสีที่เคลือบ 60-79 กรัมต่อตารางเมตร หรือ ผลิตภัณฑ์ Z450 จะต้องมีค่ามวลเฉลี่ยของสังกะสีที่เคลือบไม่น้อยกว่า 450 กรัมต่อตารางเมตร ในทำนองเดียวกันกับผลิตภัณฑ์ตาม มอก. 2228 เช่น ผลิตภัณฑ์ AZ090 ต้องมีค่ามวลของสารเคลือบสำหรับเหล็กแผ่นเคลือบอะลูมิเนียม/สังกะสีต่ำสุดรวมทั้ง 2 ด้าน 90-99 กรัมต่อตารางเมตรดังตารางที่ 2 หรือ การทดสอบราวเหล็กลูกฟูกกันรถสำหรับทางหลวง ตาม มอก. 248 กำหนดเกณฑ์การยอมรับของแผ่นเหล็กอาบสังกะสี ชนิดที่ 1 มีน้ำหนักของสังกะสีที่อาบไม่น้อยกว่า 550 กรัมต่อตารางเมตร, ชนิดที่ 2 มีน้ำหนักของสังกะสีที่อาบไม่น้อยกว่า 1100 กรัมต่อตารางเมตร และสลักเกลียวอาบสังกะสี, แป้นเกลียวอาบสังกะสี และแหวนรองอาบสังกะสี แต่ละชิ้นมีน้ำหนักของสังกะสีที่อาบไม่น้อยกว่า 305 กรัมต่อตารางเมตร และค่าเฉลี่ยจาก 3 ชิ้นต้องมีน้ำหนักของสังกะสีที่อาบไม่น้อยกว่า 381 กรัมต่อตารางเมตร เป็นต้น

ตารางที่ 1  มวลของสังกะสีที่เคลือบตาม มอก. 50

 Hot Dip Galvanizing_03

 

 

ตารางที่ 2  มวลของสารที่เคลือบตาม มอก. 2228

Hot Dip Galvanizing_04

 

 

          มาตรฐานผลิตภัณฑ์อุตสาหกรรมของผลิตภัณฑ์แต่ละชนิด มีการกำหนดเกณฑ์ยอมรับไว้เพื่อสร้างความมั่นใจต่อผลิตภัณฑ์อุตสาหกรรมในแต่ละมาตรฐาน สำหรับมวลของสารเคลือบของผลิตภัณฑ์เหล็กชุบเคลือบสังกะสีก็เช่นกัน มาตรฐานมีการกำหนดเกณฑ์ยอมรับตามชนิดของผลิตภัณฑ์ ผลการตรวจสอบมวลของสารเคลือบจะช่วยชี้บ่งว่าผลิตภัณฑ์นั้นเป็นไปตามเกณฑ์มาตรฐานที่กำหนดและสามารถนำไปใช้ได้เหมาะสมกับสภาวะการใช้งานผลิตภัณฑ์นั้นๆ

 


เอกสารอ้างอิง

  1. มาตรฐานผลิตภัณฑ์อุตสาหกรรม มอก. 50-2548 เหล็กแผ่นรีดเย็นเคลือบสังกะสีโดยกรรมวิธีจุ่มร้อน แผ่นม้วน แผ่นตัด และแผ่นลูกฟูก
  2. มาตรฐานผลิตภัณฑ์อุตสาหกรรม มอก. 248-2531 ราวเหล็กลูกฟูกกันรถ สำหรับทางหลวง
  3. มาตรฐานผลิตภัณฑ์อุตสาหกรรม มอก. 2228-2548 เหล็กแผ่นเคลือบอะลูมิเนียม/สังกะสีโดยกรรมวิธีจุ่มร้อน สำหรับงานทั่วไป งานขึ้นรูป และงานโครงสร้าง

Comments No Comments »

ผลิตภัณฑ์กาวติดฟันปลอม (Denture Adhesive)  ชนิดเนื้อครีม ผ่านมาตรฐาน ISO 10873: Denture Adhesive ผ่านการทดสอบความเป็นพิษต่อเซล์ (Cutotoxicity Test) ผ่านการทดสอบความระคายเคืองต่อผิวหนัง (Skin Irritation Test) และผ่านการทดสอบการแพ้ทางผิวหนัง (Skin Sensitization Test) ใช้งานง่าย สะดวก มีความสามารถในการยึดติดระหว่างเหงือกและฟันปลอมทั้งในสภาวะร้อน (60°C) และเย็น (5°C) สามารถยึดติดได้นานกว่า 8 ชั่วโมง มีความปลอดภัยต่อเซลล์ร่างกาย ไม่ระคายเคืองต่อผิว วัตถุดิบหาได้ง่าย และมีกระบวนการผลิตที่ง่ายดาย สามารถใช้เครื่องมือผสมที่มีอยู่โดยทั่วไป

e4

 

คุณสมบัติพิเศษ

ผลิตภัณฑ์กาวติดฟันปลอม (Denture Adhesive)  มีวิธีการใช้งานไม่ยุ่งยาก เพียงทากาวลงบนพื้นของฟันปลอมที่จะสัมผัสกับเหงือกจำนวน 3-4 ตำแหน่ง กดฟันปลอมให้แน่นกับเหงือกประมาณ 1 นาที จะเกิดการยึดติดระหว่างฟันปลอมกับเหงือก โดยกระบวนการยึดฟันปลอมของกาวติดฟันปลอมที่พัฒนาโดย วว. นี้อาศัยสมบัติการยึดติด (Adhesive) และแรงดึงดูดภายในโมเลกุลของวัสดุ (Cohesive) ทำให้ผู้ใช้รู้สึกสบายในช่องปาก ทำให้การเคี้ยวอาหารมีประสิทธิภาพและเกิดความมั่นใจในตนเองเวลาใช้งานฟันปลอม

 

สนใจติดต่อ กองการตลาด สำนักจัดการเทคโนโลยีและนวัตกรรม โทร. 0-2577-9436-38 หรือ Call Center 0-2577-9300 e-mail : marketing_tistr@tistr.or.th

Comments 3 Comments »

ปุ๋ยอัลจินัวเป็นผลิตภัณฑ์ที่สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) ถ่ายทอดเทคโนโลยีการผลิตให้กับบริษัท บริษัท อัลโกเทค จำกัด  ปุ๋ยอัลจินัวเป็น ปุ๋ยที่ได้จากจุลินทรีย์จำพวกสาหร่ายสีน้ำเงินแกมเขียวที่มีคุณสมบัติในการเปลี่ยนไนโตรเจนในอากาศเป็นแอมโมเนียซึ่งสามารถนำมาใช้ในการเพิ่มปุ๋ย ไนโตรเจนให้แก่ดินและเพิ่มผลผลิตข้าว สาหร่ายนี้เจริญได้ดีในดินชื้นแฉะหรือดินนา น้ำขัง

h10

เมื่อนำมาผลิตเป็นปุ๋ยชีวภาพจึงเหมาะที่จะนำ ไปใช้ในดินที่ปลูกข้าว โดยทางปฏิบัติสามารถพิสูจน์ได้อย่างแน่ชัดในหลายจังหวัดของประเทศไทยว่า สาหร่ายสีน้ำเงินแกมเขียวที่นำมาผลิตเป็น ปุ๋ยชีวภาพ สามารถตรึงไนโตรเจน จากอากาศได้จำนวนมาก คิดเทียบกับปุ๋ยยูเรียได้ 8–10 กิโลกรัม ต่อไร่ ในแต่ละฤดูการ ปลูกข้าว นอกจากนั้น ยังสามารถขับสารจำพวกฮอร์โมนที่ช่วยการ เจริญเติบโต ทำให้พืชแข็งแรง ให้ผลผลิตสูง และปุ๋ยชีวภาพ นี้ยังช่วยรักษาสิ่งแวดล้อม โดยเมื่อสาหร่ายสีน้ำเงินแกมเขียวตายลงจะให้อินทรียวัตถุแก่ดินทำให้โครงสร้างดินดีขึ้น การเพาะปลูกพืชหลังการทำนาจะได้ผลดี

ในกรณีที่มีการส่งเสริมการเลี้ยงปลาในนาข้าวก็จะได้ผลดีด้วย เพราะสาหร่ายเป็นอาหารของปลาและในสาหร่ายมีโปรตีน 65% ทำให้ปลาเจริญเติบโต ได้อย่างรวดเร็วและสาหร่ายนี้แพร่พันธุ์ได้เร็วจึงทันกับการเป็นอาหารของปลา สิ่งขับถ่ายของปลาจะเป็นปุ๋ยในนาข้าวและกระตุ้นการ เจริญเติบโตของสาหร่ายได้อีกทางหนึ่ง

 

 

หากสนใจผลิตภัณฑ์สามารถโทรติดต่อได้ที่ บริษัท อัลโกเทค จำกัด 109/4 ตำบลบางระกำ อำเภอนครชัยศรี จังหวัดนครปฐม 73120 โทร. 0-2319-6677 แฟกซ์ 0-2319-4224

สนใจติดต่อ กองการตลาด สำนักจัดการเทคโนโลยีและนวัตกรรม โทร. 0-2577-9436-38 หรือ Call Center 0-2577-9300 e-mail : marketing_tistr@tistr.or.th

Comments No Comments »

Thailand Institute of Scientific and Technological Research (TISTR)
Ministry of Science and Technology