Russula เครื่องดื่มจากเห็ดน้ำแป้ง

        เห็ดน้ำแป้ง มีชื่อวิทยาศาสตร์ว่า Russula  alborealata Hongo เป็นเห็ดพื้นเมืองในภาคอีสานของไทย ซึ่งจากผลการวิจัยของ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) พบว่า เห็ดชนิดนี้ มีสารสำคัญ คือ 4,5-dicaffeoylquinic acid มีสรรพคุณทางเภสัชวิทยาที่สามารถช่วยเสริมระบบภูมิคุ้มกันของร่างกาย และ ลดภาวะเสี่ยงโรคมะเร็ง ด้วยคุณสมบัติที่น่าสนใจดังกล่าว วว. จึงได้ทำการวิจัยและพัฒนาผลิตภัณฑ์เครื่องดื่มจากเห็ดชนิดนี้ขึ้น เพื่อถ่ายทอดให้กับผู้ประกอบการได้นำไปผลิตและจัดจำหน่ายกันค่ะ

หากท่านใดสนใจสามารถสอบถามข้อมูลเพิ่มเติมได้ที่
สำนักจัดการเทคโนโลยีและนวัตกรรม โทร. 0-2577-9436-38  หรือ
Call  center วว. โทร.0 2577 9300  ในวันและเวลาราชการ 
E-mail : marketing_tistr@tistr.or.th

Good Knowledge : มารู้จัก Functional Foods กันเถอะ

มาทำความรู้จักกับ Functional Foods กันว่า คืออะไร ต่างจากอาหารปกติไหม มีประโยชน์กับเราอย่างไร เราจำเป็นต้องกินหรือไม่ ได้จาก Good Knowledge เลยค่ะ

วิทยาศาสตร์และเทคโนโลยีเพื่อการจัดการขยะชุมชน

เรียบเรียงและจัดทำ Infographic โดย
เรวดี อนุวัฒนา
นักวิจัยอาวุโส
ศูนย์เชี่ยวชาญนวัตกรรมพลังงานสะอาดและสิ่งแวดล้อม (ศนพ.)

เครื่องบีบน้ำมันมะพร้าวคุณภาพสูง

เรียบเรียงและจัดทำ Infographic โดย
อรุณี ชัยสวัสดิ์
นักวิจัย
ศูนย์เชี่ยวชาญนวัตกรรมหุ่นยนต์และเครื่องจักรกลอัตโนมัติ (ศนย.)

ความปลอดภัยบรรจุภัณฑ์พลาสติกบรรจุอาหาร

ศิโรรัตน์  ตั้งสถิตพร
นักทดลองวิทยาศาสตร์บริการ
ห้องปฏิบัติการทดสอบการสลายตัวทางชีวภาพของวัสดุ
ศูนย์พัฒนาและวิเคราะห์สมบัติของวัสดุ

       ปัจจุบันมีปริมาณการใช้บรรจุภัณฑ์พลาสติกเพื่อห่อหุ้มและรักษาคุณภาพของอาหารเพิ่มสูงขึ้น อีกทั้งยังมีการออกแบบรูปร่างที่หลากหลายและมีสีสันที่สวยงาม ซึ่งอาจส่งผลให้มีสารอันตรายปนเปื้อนในอาหารและส่งผลต่อร่างกายเมื่อได้รับการสะสมในปริมาณมาก ดังนั้นในแต่ละประเทศจึงมีหน่วยงานที่รับผิดชอบดูแลด้านความปลอดภัย และกำหนดมาตรฐานของบรรจุภัณฑ์พลาสติกบรรจุอาหารขึ้น เพื่อใช้เป็นระเบียบในการควบคุมคุณภาพของบรรจุภัณฑ์ เช่น ประเทศสหรัฐอเมริกาโดยสำนักงานอาหารและยา (US Food and Drug Administration) หรือระเบียบสหภาพยุโรป (Commission Regulation) เป็นต้น เพื่อให้มั่นใจว่าผู้บริโภคจะได้รับอาหารที่ปลอดภัย ดังนั้นบรรจุภัณฑ์พลาสติกบรรจุอาหารที่ผ่านระเบียบข้อบังคับนี้ จึงได้รับการยอมรับในมาตรฐานของบรรจุภัณฑ์

1

       ประเทศไทยโดยกระทรวงสาธารณะสุข ซึ่งมีอำนาจหน้าที่เกี่ยวกับสุขภาพอนามัยของประชาชนภายในประเทศ ได้เล็งเห็นถึงความสำคัญของการป้องกันการปนเปื้อนในอาหาร จึงออกระเบียบข้อบังคับ เรื่อง กำหนดคุณภาพหรือมาตรฐานของภาชนะบรรจุที่ทําจากพลาสติก ฉบับที่ 295 ซึ่งกำหนดให้ภาชนะบรรจุที่ผลิตจากพลาสติกต้องมีคุณภาพ เช่น

  1. สะอาด ไม่มีสารอื่นออกมาปนเปื้อนกับอาหารในปริมาณที่อาจเป็นอันตรายต่อสุขภาพ ไม่มีจุลินทรีย์ที่ทำให้เกิดโรค และไม่มีสีออกมาปนเปื้อนกับอาหาร
  2. ห้ามใช้บรรจุภัณฑ์พลาสติกที่มีสีสัมผัสอาหาร ยกเว้นพลาสติกชนิดลามิเนต (laminate) ที่พลาสติกชั้นในสุดต้องไม่มีสี หรือบรรจุภัณฑ์พลาสติกนั้นผ่านการเห็นชอบจากสำนักงานคณะกรรมการอาหารและยา
  3. ห้ามมิให้ใช้ภาชนะบรรจุที่ทำขึ้นจากพลาสติกที่ใช้แล้วบรรจุอาหาร เว้นแต่ใช้เพื่อบรรจุผลไม้ ชนิดที่ไม่รับประทานเปลือก
  4. ห้ามมิให้ใช้ภาชนะบรรจุที่ทำจากพลาสติกที่เคยใช้บรรจุหรือหุ้มห่อปุ๋ย วัตถุมีพิษ หรือวัตถุที่อาจเป็นอันตรายต่อสุขภาพเป็นภาชนะบรรจุอาหาร
  5. ภาชนะบรรจุที่ทำจากพลาสติกซึ่งใช้บรรจุนมหรือผลิตภัณฑ์นม ต้องเป็นพลาสติกชนิดพอลิเอทิลีน, เอทิลีน 1-แอลคีน โคพอลิเมอร์ไรซด์เรซิน, พอลิพรอพีลีน, พอลิสไตรีน หรือพอลิเอทิลีนเทเรฟ-ทาลเลต
  6. ปริมาณสารตะกั่ว สารแคดเมียม สารหนู สารฟอร์มัลดีไฮด์ และสารสไตรีน เป็นต้น ไม่เกิน 100 มิลลิกรัมต่อกิโลกรัม

2

       นอกจากข้อกำหนดด้านความปลอดภัยของบรรจุภัณฑ์พลาสติกทางการค้าทั่วไปแล้ว ยังมีข้อกำหนดด้านความปลอดภัยของบรรจุภัณฑ์พลาสติกชีวภาพ ตามมาตรฐานสากล ISO17088-2012  ซึ่งประเทศไทยโดยสำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรมเป็นหน่วยงานที่รับผิดชอบ ได้ออกประกาศกำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรมข้อกำหนดพลาสติกสลายตัวได้ เลขที่ มอก. 17088-2555 เพื่อให้ผลิตภัณฑ์พลาสติกชีวภาพของไทยได้คุณภาพตามกฎระเบียบในการจัดการขยะบรรจุภัณฑ์ของประเทศคู่ค้าที่สำคัญและเป็นการกำกับดูแลด้านความปลอดภัยให้แก่ผู้บริโภค

เกณฑ์กำหนดตามมาตรฐานสากล ISO 17088-2012 (หน่วยมิลลิกรัมต่อกิโลกรัม)

table1

       ถึงแม้ว่าภาครัฐได้ให้ความสำคัญกับสุขภาพและความปลอดภัยของผู้บริโภค ด้วยการกำหนดมาตรฐานความปลอดภัยต่างๆ ออกมา หากแต่ผู้บริโภคยังเลือกใช้บรรจุภัณฑ์พลาสติกที่มีสมบัติไม่เหมาะสม ก็มีโอกาสได้รับสารอันตรายเพิ่มขึ้นและก่อให้เกิดปัญหาต่อสิ่งแวดล้อมเพิ่มขึ้นอย่างต่อเนื่อง

ที่มา:

สำนักงานคณะกรรมการอาหารและยา. 2558. การศึกษาข้อมูลกฎระเบียบที่เป็นอุปสรรคต่อการนำเข้าและส่งออกผลิตภัณฑ์สุขภาพ

ประกาศกระทรวงสาธารณสุข (ฉบับที่ 295) พ.ศ. 2548 เรื่อง กำหนดคุณภาพหรือมาตรฐานของภาชนะบรรจุที่ทำจากพลาสติก

International Organization for Standardization. ISO 17088: Specifications for compostable   plastics. 8 pp.

ผลิตภัณฑ์อาหารพร้อมบริโภคสำหรับผู้สูงอายุ (Elderly Food)

พัฒนาโดย กองพัฒนาและจัดการความรู้องค์กร (กจค.)


ผลิตภัณฑ์อาหารพร้อมบริโภคสำหรับผู้สูงอายุ Elderly Food

ก๊าซชีวภาพในระดับชุมชนและครัวเรือน (Biogas Production)

พัฒนาโดย กองพัฒนาและจัดการความรู้องค์กร (กจค.)


ก๊าซชีวภาพในระดับชุมชนและครัวเรือน Biogas Production

การประเมินผลพฤติกรรมการกัดกร่อนของโลหะจากเส้นโค้งโพลาไรเซชัน (polarization curve)

การประเมินผลพฤติกรรมการกัดกร่อนของโลหะจากเส้นโค้งโพลาไรเซชัน (polarization curve)

>>โดย รุจีภรณ์ นาคขุนทด <<<

ศูนย์พัฒนาและวิเคราะห์สมบัติของวัสดุ

 

          การกัดกร่อน (corrosion) ของโลหะสามารถเกิดขึ้นได้ตลอดเพราะเป็นพฤติกรรมธรรมชาติของโลหะ เมื่อเกิดขึ้นแล้วย่อมทำให้เกิดความเสียหายได้ทั้งในด้านทรัพย์สิน เศรษฐกิจ ถ้าเราสามารถประเมินความเสียหายจากการกัดกร่อนของโลหะได้ก่อนก็จะช่วยยับยั้งความเสียหายที่จะเกิดขึ้นในอนาคต การประเมินอัตราการกัดกร่อนของโลหะ สามารถทำได้หลายวิธี เช่น การทดสอบการกัดกร่อนโดยการผึ่งในบรรยากาศ การทดสอบความทนละอองน้ำเกลือ การใช้คูปองการกัดกร่อน การทดสอบด้วยเทคนิคเคมีไฟฟ้าโดยประเมินผลการกัดกร่อนจากเส้นโค้งโพลาไรเซชัน (polarization curve) ที่ช่วยลดปัญหาที่จะเกิดขึ้นได้

       การทดสอบการกัดกร่อนของโลหะโดยเทคนิคเคมีไฟฟ้า (electrochemical technique) เป็นวิธีหนึ่งที่ช่วยประเมินอัตราการกัดกร่อนได้ดีและเร็ว และเป็นการจำลองการเกิดกระบวนการการกัดกร่อนของโลหะ โดยปกติแล้วการเกิดการกัดกร่อนเป็นปฏิกิริยาทางกายภาพของโลหะกับสภาพแวดล้อมรอบๆ โลหะ ซึ่งเกิดจากการถ่ายเทประจุไฟฟ้าหรือแลกเปลี่ยนอิเล็กตรอนในสารละลายของน้ำ เรียกว่า ปฏิกิริยาเคมีไฟฟ้า (electrochemical reaction) การเกิดปฏิกิริยาเคมีไฟฟ้าของการกัดกร่อนเป็นปฏิกิริยาออกซิเดชันและรีดักชัน เมื่อน้ำหรือสารละลายที่สัมผัสกับโลหะ หลักการของการทดสอบการกัดกร่อนโลหะโดยใช้เทคนิคทางเคมีไฟฟ้า คือการป้อนศักย์ไฟฟ้าเร่งการกัดกร่อน โดยใช้เครื่อง potentiostat/galvanostat ในสภาวะที่มีสารละลายอิเล็กโทรไลต์ ทำหน้าที่เป็นทางเดินของอิออน และเป็นการเชื่อมต่อเซลล์เคมีไฟฟ้า (electrochemical cell) ดังรูปที่ 1 ทำให้เราสามารถคำนวณหาอัตราการกัดกร่อนได้

          เซลล์เคมีไฟฟ้าที่ใช้ในการทดสอบการกัดกร่อนของโลหะประกอบไปด้วย

  • ขั้วทำงาน (working electrode หรือ specimen electrode) เป็นขั้วอาโนด ก็คือชิ้นตัวอย่างทดสอบ เป็นขั้วที่เกิดปฏิกิริยาออกซิเดชันและให้อิเล็กตรอน
  • ขั้วมาตรฐานอ้างอิง (standard reference electrode) เป็นขั้วแคโทด (cathode) ที่เกิดปฏิกิริยารีดักชันและรับอิเล็กตรอน เช่น SCE (saturated calomel electrode) หรือ Ag/AgCl ที่มีค่าศักย์ไฟฟ้าคงที่
  • ขั้วอิเล็กโทรดกระแส (counter electrode) มักจะใช้โลหะที่เสถียร เช่น แพลตินัม หรือ กราไฟต์ หรือ เหล็กกล้าไร้สนิม
  • สารละลายอิเล็กโทรไลต์ (electrolyte) ซึ่งเป็นทางเดินของอิออน

Microsoft Word - paper-58

รูปที่ 1  เซลล์เคมีไฟฟ้าที่ใช้ในการทดสอบการกัดกร่อน

 

          ค่าที่วัดได้จากการทดสอบ ได้เป็นเส้นโค้งโพลาไรเซชัน (polarization curve) ซึ่งแสดงความสัมพันธ์ระหว่างค่าศักย์ไฟฟ้าและค่ากระแสไฟฟ้า เมื่อป้อนศักย์ไฟฟ้าจนกระทั่งโลหะเริ่มเกิดการกัดกร่อนเราเรียกว่าค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) ที่จุดนี้ก็จะได้ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) ด้วย ซึ่งนำไปคำนวณหาอัตราการกัดกร่อน แสดงดังรูปที่ 2 ในขณะเดียวกันถ้าโลหะที่มีฟิล์มพาสซีพ (passive film) ที่ทนต่อการกัดกร่อน เช่น เหล็กกล้าไร้สนิม ถ้าป้อนศักย์ไฟฟ้าต่อไปอีกโลหะนั้นสร้างฟิล์มพาสซีพ (passive film) เพื่อป้องการการกัดกร่อนทำให้ค่ากระแสไฟฟ้าคงที่หรือลดลง ในขณะเมื่อที่ป้อนศักย์ไฟฟ้าเพิ่มขึ้นจนถึงระดับหนึ่งที่ทำให้ค่ากระแสไฟฟ้าเริ่มเพิ่มขึ้นอีกครั้ง  แสดงว่าเกิดการแตกของฟิล์มพาสซีพ (passive film) เป็นรูเข็ม (pitting) นั่นคือค่าศักย์ไฟฟ้าที่เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) และค่ากระแสไฟฟ้าพาสซีพ (passive current density, Ip) แสดงดังรูปที่ 3

Polarization curve_02

รูปที่ 2 เส้นโค้งโพลาไรเซชันสำหรับการกัดกร่อน แบบทั่วผิวหน้าของโลหะ (ASTM G 3)

 

Polarization curve_03

 

รูปที่ 3 เส้นโค้งโพลาไรเซชันสำหรับการกัดกร่อนที่เกิดฟิล์มพาสซีพ (passive film) คลุมทั่วผิวหน้าโลหะ (ASTM G 3)

 

          ลักษณะของเส้นโค้งโพลาไรเซชัน (polarization curve) แสดงพฤติกรรมการกัดกร่อนของโลหะมีรายละเอียดดังนี้

  • ค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) เป็นค่าศักย์ไฟฟ้าที่โลหะเริ่มเกิดการกัดกร่อน ซึ่งถ้าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อนต่ำจะไวต่อการกัดกร่อนมากกว่าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อนสูง
  • ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) เป็นค่าความหนาแน่นกระแสไฟฟ้าที่เกิดขึ้นที่จุดเกิด Ecorr โดยค่า Icorr แสดงถึงการกัดกร่อนแบบทั่วผิวหน้า (uniform corrosion) และสามารถนำมาคำนวณหาค่าอัตราการกัดกร่อนแบบทั่วผิวหน้าต่อปีของตัวอย่างทดสอบได้ จากสูตรดังนี้

                    อัตราการกัดกร่อน (corrosion rate) =(k x Icorr x EW)/(A x D)

                       –  k คือ ค่าคงที่ของการคำนวณเปลี่ยนหน่วยต่างๆ เช่น มีค่า 13 ถ้าอัตราการกัดกร่อนมีหน่วย มิลต่อปี (mil per year, mpy) หรือมีค่า 0.00327 ถ้าหน่วย มิลลิเมตรต่อปี (millimeter per year, mm/y)

                      –  Icorr คือ ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density) หน่วยเป็นไมโครแอมป์ต่อตารางเซนติเมตร (µA/cm2)

                       –  EW คือ ค่ามวลสมมูล (equivalent Weight) ของโลหะตัวอย่างที่ผ่านการทดสอบ ถ้าโลหะผสมต้องคำนวณตามสัดส่วน

                       –  A คือ พื้นที่ผิวของโลหะตัวอย่าง หน่วยเป็นตารางเซนติเมตร (cm2)

                       –  D คือ ความหนาแน่นของโลหะตัวอย่าง หน่วยเป็น กรัมต่อลูกบาศก์เซนติเมตร (g/cm3)

  • ค่าศักย์ไฟฟ้าขณะที่เกิดฟิล์มที่ผิว (primary passivation potential, Epp) เป็นค่าศักย์ไฟฟ้าที่โลหะเกิดฟิล์มพาสซีพ (passive film) คลุมทั่วผิวหน้าโลหะ ซึ่งมีผลให้เกิดการกัดกร่อนน้อยลง
  • ค่าศักย์ไฟฟ้าที่เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) เป็นค่าศักย์ไฟฟ้าที่โลหะเกิดการกัดกร่อนแบบรูเข็ม (pitting) ซึ่งพบในโลหะที่สามารถสร้างฟิล์มพาสซีพ (passive film) ที่ทนต่อการกัดกร่อน เช่น เหล็กกล้าไร้สนิม

 

          ตัวอย่าง เส้นโค้งโพลาไรเซชัน (polarization curve) และประเมินผลของการทดสอบแผ่นอะลูมิเนียมในสารละลายกรดซัลฟิวริก (Sulfuric acid, 1N H2SO4) รายละเอียดแสดงดังรูปที่ 4

 

Microsoft Word - paper-58

จากเส้นโค้งโพลาไรเซซัน (polarization curve) ประเมินผลได้ดังนี้

–  ค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential, Ecorr) = – 0.142 V

–  ค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (corrosion current density, Icorr) =  81 µA/ cm2

ข้อมูลของโลหะตัวอย่าง

–  ค่ามวลสมมูล (equivalent weight) ของอะลูมิเนียม =  99 g.

–  พื้นที่ผิวของโลหะตัวอย่าง =  1 cm2

–  ความหนาแน่นของอะลูมิเนียม =  7 g/cm3

คำนวณหาอัตราการกัดกร่อน (corrosion rate) =(k x Icorr x EW)/(A x D)

–  อัตราการกัดกร่อนของอะลูมิเนียม  =  0.15 mm/y

 

 

รูปที่ 4  เส้นโค้งโพลาไรเซชัน (polarization curve) ของการกัดกร่อนของแผ่นอะลูมิเนียมในสารละลายกรดซัลฟิวริก (Sulfuric acid,  1N H2SO4) และอัตราการกัดกร่อนของอะลูมิเนียม

 

          ตัวอย่างเส้นโค้งโพลาไรเซชัน (polarization curve) ที่เกิดฟิล์มพาสซีพ (passive film)  และประเมินผลค่าศักย์ไฟฟ้าที่ทำให้เกิดการกัดแบบรูเข็ม จากการทดสอบแผ่นสแตนเลส ทดสอบในสารละลายโซเดียมคลอไรด์ (5%NaCl) แสดงดังรูปที่ 5

Microsoft Word - paper-58

 

 

 

 

จากเส้นโค้งโพลาไรเซซัน (polarization curve) ที่เกิดฟิล์มพาสซีพ (passive film) ประเมินผลได้ดังนี้

ค่าศักย์ไฟฟ้าที่ทำให้เกิดการกัดกร่อนแบบรูเข็ม (pitting potential, Ep) =  0.12 V

 

 

 

 

 

รูปที่ 5  เส้นโค้งโพลาไรเซชัน (polarization curve) ของการกัดกร่อนของแผ่นสแตนเลส ในสารละลายโซเดียมคลอไรด์ (5% NaCl) ที่เกิดฟิล์มพาสซีพ (passive film)

 

          ผลการประเมินการกัดกร่อนของโลหะจากเส้นโค้งโพลาไรเซชัน (polarization curve) ถ้าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อน (Ecorr ) ต่ำ จะไวต่อการกัดกร่อนมากกว่าโลหะที่มีค่าศักย์ไฟฟ้าการกัดกร่อน (Ecorr ) สูง และคำนวณหาอัตราการกัดกร่อนของโลหะต่อปีได้จากค่าความหนาแน่นของกระแสไฟฟ้าการกัดกร่อน (Icorr) ดังนั้นการทดสอบการกัดกร่อนโลหะโดยเทคนิคเคมีไฟฟ้า (electrochemical test) เป็นวิธีหนึ่งที่สามารถศึกษาพฤติกรรมการกัดกร่อนของโลหะได้ ใช้เวลาน้อย เพื่อช่วยให้การเลือกวัสดุให้เหมาะสมกับงานหรือสามารถหาวิธีป้องกันการกัดกร่อนได้ดี

 

เอกสารอ้างอิง

การกัดกร่อนและการเลือกใช้วัสดุ โดย รศ. ศิริลักษณ์ นิวิฐจรรยงค์ ภาควิชาเคมีอุตสาหการ คณะวิทยาศาสตร์ประยุกต์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือพิมพ์ครั้งที่ 1 พ.ศ. 2545

Standard Practice for Convention Applicable to Electrochemical Measurements in Corrosion Testing1, ASTM G 3 – 89 (reapproved 2004)

Standard Practice for Calculation of Corrosion Rate and Related information from Electrochemical Measurements1, ASTM G 102 – 89 (reapproved 2004)E1

คู่มือการใช้เครื่อง Potentiostat/Galvanostat

วว. กับการสนองงานโครงการอันเนื่องมาจากพระราชดำริด้านพลังงานทดแทน

 วว. กับการสนองงานโครงการอันเนื่องมาจากพระราชดำริด้านพลังงานทดแทน

>>>>> โดย  วัชรีวรรณ ทรัพย์รุ่งเรือง <<<<<

15676352_10154973150273938_3643245635217486564_o (1)

 

          ในการเสวนา “วว….สืบสานงานพ่อ” ณ วว.เทคโนธานี คลองห้า เมื่อปลายเดือนธันวาคม ที่ผ่านมาดร.ธีรภัทร ศรีนรคุตร ผู้เชี่ยวชาญพิเศษ ได้เล่าให้ชาว วว. ฟังว่า วว. ได้เริ่มดำเนินการโครงการเอทานอล ซึ่งเป็นโครงการอันเนื่องมาจากพระราชดำริด้านพลังงานทดแทน มาตั้งแต่ปี พ.ศ. 2522 ซึ่งเป็นปีที่ท่านผู้เชี่ยวชาญพิเศษ ได้เริ่มเข้ามาทำงาน ในตำแหน่งวิศวกร ท่านได้เล่าว่า พระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ได้ทรงมีพระราชดำริว่าวิกฤตด้านพลังงานกระทบกับชีวิตของมนุษย์บนโลกใบนี้อย่างต่อเนื่อง จะเห็นจากการเกิดวิกฤตพลังงานนับตั้งแต่ปี 2516 ราคาน้ำมันปรับตัวสูงขึ้นแบบก้าวกระโดด เนื่องจากสงคราม และต่อมาในปี 2523 ก็เกิดวิกฤตพลังงานขึ้น โดยประเทศไทยซึ่งเป็นประเทศเล็กๆ มีเนื้อเพียงแค่ที่ราวๆ 1 % ของโลกใบนี้ กลับต้องนำเข้าน้ำมันเป็นมูลค่านับล้านล้านบาท แต่ด้วยสายพระเนตรอันกว้างไกลของพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ทรงเห็นว่าประเทศไทยเราตั้งอยู่บนแผ่นดินสุวรรณภูมิซึ่งมีความอุดมสมบูรณ์ ด้วยพืชพันธุ์ธัญญาหารมากมาย พระองค์จึงทรงมีพระราชดำริให้นำเอาพืชผลทางเกษตรที่มีอยู่มาผลิตเป็นพลังงานทดแทนการนำเข้าน้ำมัน ซึ่งเป็นพลังงานฟอสซิลเกิดจากการทับถมของซากพืช ซากสัตว์ใช้เวลาเป็นล้านๆ ปี มาทำทดแทนน้ำมัน โดยไม่ต้องใช้เวลาเป็นล้านล้านปีเพื่อที่จะรอน้ำมัน

          วว. จึงได้คิดโครงการสนองแนวพระราชดำริดังกล่าว ด้วยการนำเอาพืชผลทางการเกษตร ได้แก่ มันสำปะหลัง  และอ้อย มาผลิตเป็นเอทานอลใช้ทดแทนน้ำมัน โดยเริ่มทำโครงการวิจัยและพัฒนานี้ ตั้งแต่ปี 2522  ต่อมาในปี 2524 จึงเริ่มสร้างโรงงานต้นแบบ และเริ่มทดลองผลิตในปี 2526 จากนั้นจึงเริ่มทดลองตลาดครั้งแรกในปี 2528 ด้วยการเอาเอทานอลผสมน้ำมันเบนซินได้เป็นแก๊สโซฮอล์ (สมัยนั้นเรียก เบนโซฮอล์ หรือน้ำมันเบนซินพิเศษ) สุดท้ายเมื่อประสบความสำเร็จเราก็เสนอเรื่องเข้าคณะรัฐมนตรี (ครม.) ไป 4 ครั้ง แต่เนื่องจากสมัยก่อนราคาน้ำมันอาจจะไม่แพงมาก ทำเป็นเชิงพาณิชย์อาจจะไม่คุ้ม ทำให้โครงการหยุดชะงัก

          จนกระทั่งในปี 2540 หลังจาก ดร.ธีรภัทร สำเร็จการศึกษาปริญญาเอกกลับจากต่างประเทศ จึงเริ่มเสนอโครงการฯ ในระดับนโยบายให้กระทรวงวิทยาศาสตร์และเทคโนโลยี ซึ่งทางกระทรวงฯ ได้พิจารณาเห็นว่าเป็นโครงการที่ดี จึงได้ตั้งเป็นคณะกรรมการขึ้นมาศึกษา โดย วว. สนับสนุนข้อมูลด้านเทคนิค และให้มีการไปศึกษาดูงานที่ประเทศบราซิล เนื่องจากเป็นประเทศแรกที่มีการใช้เอทานอลเป็นเชิงพาณิชย์ โดยยึดหลักการที่ว่า เมื่อเขาทำได้ เราก็ต้องทำได้ จากนั้นก็เริ่มทำการประชาสัมพันธ์โครงการฯ ผ่านสื่อโทรทัศน์ครั้งแรกในรายการท้าพิสูจน์ หัวข้อ “มันสำปะหลังนำมาทำน้ำมันได้จริงหรือ” ซึ่ง ดร.ธีรภัทร ได้ร่วมรายการเพื่อให้ความรู้เกี่ยวกับเอทนอล

          ต่อมาในวันที่ 19 กันยายน 2543 กระทรวงวิทยาศาสตร์ฯ ได้นำเรื่องเอทานอลเข้าที่ประชุม ครม. ซึ่งครม. มีมติให้สนับสนุนและส่งเสริมการใช้เอทานอลในเชิงพาณิชย์ จากนั้นรัฐมนตรีกระทรวงอุตสาหกรรมขณะนั้นได้ขอให้ย้ายโครงการฯ นี้ ไปอยู่ภายใต้กระทรวงอุตสาหกรรม ตั้งเป็น “คณะกรรมการเอทานอลแห่งชาติ” โดย ดร.ธีรภัทร ได้รับเกียรติให้เป็นกรรมการผู้ทรงคุณวุฒิ ดำเนินการเรื่องนโยบาย ระเบียบ กฎเกณฑ์ต่างๆ ซึ่งเป็นที่มาของการผลิตเอทานอลเชิงพาณิชย์ และในปัจจุบันมีโรงงานผลิตเอทานอล 22 โรงงาน ผลิตเอทานอลได้วันละประมาณ 4 ล้านลิตร

15540914_10154973150638938_5038547393470841823_o (1)          อย่างไรก็ตาม ภายหลังจากที่รัฐบาลเปิดให้เอกชนเข้ามาลงทุนแล้ว ยังมีประชาชนส่วนหนึ่งยังไม่เชื่อว่าเอทานอลสามารถนำมาทดแทนน้ำมันได้จริง ดร.ธีรภัทร ได้ประสานความร่วมมือกับ ดร.อนุสรณ์ แสงนิ่มนวล ผู้อำนวยการอาวุโสของบริษัท บางจากปิโตรเลียม จำกัด (มหาชน) ในขณะนั้น ได้อนุมัติงบประมาณให้ วว. มา 7 แสนบาท สำหรับซ่อมแซมโรงงานต้นแบบผลิตเอทานอลของ วว. ที่บางเขน เพื่อให้ผลิตเอทานอลส่งให้บางจากนำไปทดลองตลาดระหว่างปีพ.ศ. 2544 – 2546 และเพื่อเป็นการสร้างความมั่นใจ จึงได้ขอความร่วมมือทดลองใช้แก๊สโซฮอล์กับรถยนต์ของทางราชการก่อน

              ดร.ธีรภัทร กล่าวว่า “การใช้เอทานอล หรือแก๊สโซฮอล์ในประเทศไทยจะเกิดขึ้นไม่ได้เลยถ้าไม่มี วว. ที่เป็นหน่วยงานหลักของประเทศในการดำเนินโครงการเอทานอลสนองแนวพระราชดำริของพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ตลอดชีวิตการทำงานได้ทำงานในโครงการเอทานอลประมาณเกือบ 50 โครงการ และมีโอกาสได้เข้าเฝ้าพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดชถึง 4 ครั้ง แต่ครั้งที่ภาคภูมิใจมากที่สุดในชีวิตคือ ครั้งที่ได้ทูลเกล้าถวายหนังสือเฉลิมพระเกียรติ พลังงานทดแทนเอทานอลไบโอดีเซล เล่มนี้ถือเป็นคัมภีร์เล่มแรกสำหรับเอทานอลในเมืองไทย”

          โครงการเอทานอลของ วว. ถือเป็นความภาคภูมิใจของ วว. เป็นอย่างมาก ที่ได้สนองพระราชดำริพระบาทสมเด็จพระปรมินทรมหาภูมิพลอดุลยเดช ในเรื่อง การลดการนำเข้าพลังงาน และช่วยเหลือเกษตรกรหลาย 10 ล้านครัวเรือน และช่วยประเทศไทยมีพลังงานสะอาดใช้ อย่างยั่งยืน

—————————————————————————-

เตาพลังงานแสงอาทิตย์ พลังงานฟรี จากค่ายเยาวชนสะแกราช

เตาพลังงานแสงอาทิตย์ พลังงานฟรี จากค่ายเยาวชนสะแกราช

>>>>> โดย วัชรีวรรณ ทรัพย์รุ่งเรือง <<<<<

          “ไข่ต้มพลังงานแสงอาทิตย์ของเด็กๆ พร้อมทานแล้วค่ะ”

           ไม่น่าเชื่อว่า เพียงระยะเวลาแค่ 3 – 4 ชั่วโมง กับแสงแดดจ้าในฤดูร้อนกลางป่าดิบแล้งสะแกราช จะทำให้เยาวชนสมาชิกค่ายเยาวชนวิทยาศาสตร์ ของ วว. ได้รับประทานไข่ไก่ที่สุกทั่วถึงกัน

          เราได้ให้น้องๆ เยาวชนทำการทดลอง ประดิษฐ์เตาพลังงานแสงอาทิตย์ เลียบแบบตามหลักการทำเตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ของมูลนิธิศูนย์สื่อเพื่อการพัฒนา ด้วยหลักการง่ายๆ อันได้แก่ การใช้พื้นผิวโลหะที่รองรับและสะสมพลังงานแสงอาทิตย์ และเปลี่ยนไปเป็นพลังงานความร้อน ก่อนที่จะถ่ายเทไปสู่พื้นผิวภาชนะที่รองรับอาหารที่ต้องการปรุงให้สุก

image001image003

 

          ด้วยหลักการดังนี้ จะได้ เตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ที่มีลักษณะเป็นกล่องสี่เหลี่ยม ภายในกล่องสี่เหลี่ยมมีผนัง 4 ด้าน และพื้น 1 ด้านที่เป็นฉนวนกันความร้อนที่สามารถกักเก็บความร้อน ส่วนด้านบนของกล่องปิดด้วยกระจกใส เมื่อแสงแดดส่องผ่านกระจกเข้าไปในกล่อง จะถูกดูดซับไว้ด้วย แผ่นรองรับแสงสีดำและภาชนะใส่อาหารสีดำ พลังงานแสงที่ถูกดูดซับเอาไว้จะเปลี่ยนไปเป็นพลังงานความร้อนสะสมอยู่ภายในกล่อง

       น้องๆ เยาวชน แบ่งกลุ่มกันออกไปเป็น 5 กลุ่ม แต่ละกลุ่มช่วยกันสร้างเตาเลียนแบบเตาพลังงานแสงอาทิตย์แบบกล่อง (Solar Box Cooker) ด้วยหลักการเดียวกัน จากวัสดุ อุปกรณ์ที่พอหาได้ ได้แก่ ลังกระดาษ A4 กระดาษอะลูมิเนียมฟอยล์ ปกเอกสารแผ่นใส กระดาษโปสเตอร์สีดำ กรรไกร คัตเตอร์ แลกซิน ฯลฯ

         จากการสังเกตการณ์ของทีมงาน และพี่เลี้ยง พบว่าเยาวชนทุกคนตื่นเต้นมาก และร่วมมือร่วมใจช่วยกันประดิษฐ์เตาพลังงานแสงอาทิตย์ เป็นอย่างดี หลายกลุ่มทำได้เหนือความคาดหมายว่าเยาวชนชั้นประถมศึกษาตอนปลายจะสามารถทำได้ น้องๆ ใช้หลักการสังเกต พยายามประดิษฐ์เลียนแบบเตาต้นแบบให้ใกล้เคียงได้มากที่สุด มีการใช้หลักการดูดซับแสง-โดยใช้กระดาษสีดำ หลักการสะท้อนของแสง-ใช้อะลูมิ
เนียมฟอยล์ หลักการกักเก็บความร้อน-ใช้แผ่นใสปิดหน้ากล่อง จนทำให้หลายกลุ่มประสบความสำเร็จในการทำไข่ให้สุก

 

image008image004image006

 

          กิจกรรมนี้ ถือว่าประสบผลสำเร็จเป็นอย่างดี เยาวชนชื่นชอบเป็นอย่างมาก เพราะเป็นกิจกรรมที่น้องๆ ได้ลงมือทำเอง ประดิษฐ์สิ่งของ และทำการทดลองเรื่องพลังงานแสงอาทิตย์ (solar energy) ด้วยตัวเอง สร้างความรู้ (knowledge) ความภาคภูมิใจ (proudly) ให้กับเยาวชน และยังก่อให้เกิดความตระหนัก (awareness) ด้านการอนุรักษ์พลังงาน ส่งผลให้เยาวชนมีทัศนคติ (attitude) ที่ดีต่อการรักษาทรัพยากรธรรมชาติ เพื่อโลกที่น่าอยู่มากยิ่งขึ้น